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Abstract-Biot and Willis wrote that consolidation theory could be derived without reference to
porosity. I do so in this article. The coefficients in the consolidation equation that results are easier
to understand than Biot's. In special cases the theory leads to three-dimensional diffusion equations.
One such is when all constituents of the material are intrinsically incompressible, a good approxi
mation for articular cartilage. In one dimension the conditions leading to a diffusion equation are
much broader. Published by Elsevier Science Ltd.

NOTATION

Symbols that have the same meaning here as in Biot (1955) or Biot and Willis (1957) are identified. Symbols
found in the final consolidation equations in this paper are marked with a heart .,.
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The rise in pore pressure caused by an increase e in extent in the absence of flow
into or out of the sample. Also, the rise in tensile total stress " - p caused by an
injection of fluid into the sample at constant extent. B is negative.
Relative increase in the extent of the solid skeleton, i.e. expansion of the volume
throughout which the solid structure extends divided by the volume (Biot (1955),
Biot and Willis (1957)).
Deformation, the slope of displacement in the i direction with distance in the j
direction (Bwt (1955), Biot and Willis (1957)).
Relative expansion of the solid structure in the X, y and z directions, respectively
(Biot (1955), Biot and Willis (1957».
Flow resistivity of the material.
Rise in pore pressure per unit volume of fluid injected into a unit volume of
material when the volume throughout which the solid extends, the extent, is kept
constant. (Much less than unlt volume would be injected in an actual test.) The
solid material must be sufficiently pre-compressed that it does not pull away from
the walls of the container during the test. Alternatively it can be attached to the
walls. M is positive (Biot and Willis (1957».
Pore pressure (Biot and Willis (1957».
Time (Biot (1955».
A particular axis.
Bulk modulus of the whole material in the absence of redistribution of fluid. The
material is compressed in a jacket that prevents fluid from entering or leaving it.
If necessary the solid of the material is precompressed sufficiently to keep it from
pulling away from the jacket. Alternatively it can be attached to the jacket. Z is
positive.
Pore pressure compressibility of the skeleton domain, the negative of the pro
portional increase in extent (which is negative) per unit rise in pore pressure at
constant eJlective stress. If the solid forms a defined phase, b is the compressibility
of the solid (Biot and Willis (1957».
The increase in effective stress caused by a unit increase in pore pressure at constant
extent; also the difference between the i,ncrease in extent at constant pressure and
the fluid inflow (Biot and Willis (\957»).
The volume of fluid that flows into a sample whose extent has been increased by
one unit volume at constant pore pressure; also the negative of the rise in total
tension with increase in pore' pressure if flow of fluid is prevented. (Biot and Willis
(\957».
The coefficient of fluid content, the amount of fluid that enters a unit volume of
unrestrained sample per unit increase in pore pressure. The boundaries across
which the flow is defined are fixed to thl~ skeleton and shrink along with the sample
as the pore pressure is increased (Biot and Willis (1957».
Effective-stress compressibility ofthe skeleton domain, the proportional expansion
of the extent of the solid per unit isotropic effective tensile stress at constant pore
pressure {Biot and Willis (1957».
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Lame constant of the skeleton structure, i.e., the Lame constant of the entire
material at constant pore pressure (Biot and Willis (1957)).
Shear modulus of the skeleton structure. This is also the shear modulus of the
entire material. It is independent of pore pressure (Biot and Willis (1957)).
Poi~,son's ratio of the skeleton structure, i.e., of the whole material at constant
pressure.
The component of total stress in the i direction across a plane normal to the j axis
(Biot and Willis (1957)).
Average effective tensile stress.
The component of eff(~ctive stress in the i direction across a plane normal to the j
axis. When i = j, ,;; = ,;, = ,,,+1'. When i '" j, <; = "j (Biot and Willis (1957)).
The confined compression modulus of the material at constant pore pressure. Also
called the aggregate modulus.
Fluid content, the volume of fluid in material initially of unit volume in excess of
that when l' and " are both zero. The boundary of the test volume is fixed 1:0 the
skeleton of the material (Biot and Willis (1957)).

INTRODUCTION

Familiar treatments of poroelasticity such as those: in Biot (1941, 1955), Biot and Willis
(1957), Kenyon (1976), Mow and Lai (1980), Mow et at. (1980), and Simon (1992) use a
stress separation system. They divide the total stress in the poroelastic material into stress
in the solid and stress in the fluid. Fluid stress is the negative of the pore pressure (tension
is taken as positive) times the porosity. The porosity is the volume occupied by fluid divided
by the total volume of the material. Subtracting fluid stress from total stress leaves the solid
stress.

Soil mechanicians, in contrast, use a stress-superposition system. Pore pressure is taken
to exist throughout the material, solid as well as fluid. Physically this is true, because pore
pressure causes an equal isotropic compressive stress in the solid. Subtracting pore pressure
from the total compressive stress leaves "elfective compressive stress", the consequence of
those stresses in the solid that are additional to the hydrostatic stress.

Total stress and pore pressure are quantities of direct mechanical significance, the ones
an engineer building a dam would measure or want to predict. To re-express these stresses
in the stress-separation system one must assume a porosity, but any value can be used
because it drops out when the stresses are converted back into total stress and pore pressure.

Porosity per se has no effect on consolidation. It is the flow permeability consequent
on the presence of the pores that is significant. Obviously a sponge of intrinsically incom
pressible material that has 10% porosity cannot lose more than 10% of its volume, but the
loss in pore volume affects consolidation only via reduction in the permeability of the
sponge structure and increase in its stiffness moduli.

Harrigan and Mann (1987) noted thaI: poroelastic behavior does not require that the
material be comprised of distinct solid and fluid phases. Pore pressure at a particular point
is defined by Harrigan and Mann as the pressure in pure fluid in equilibrium with the fluid
at the point. Imagine that a tube full of pure fluids leads from the point to a pressure guage.

Because the explicit presence of porosity in consolidation theory is a detour that has
no effect on the results it should be possible to leave it out. Biot and Willis (1957, pp. 597
598) agree. Having introduced the stress-superposition system they say, "Furthermore, if
the Darcy equation for volume flow is used, all the equations of consolidation theory may
be developed without reference to porosity." They did not give the derivation.

I give it in this article, in part because the presence of porosity has led to confusion
about the matching conditions at a boundary between poroelastic material and fluid. For
example Mansour and Mow (1977, p. 166) wrote that "surface area porosity" (the porosity
right at the surface as distinct from the porosity in the bulk of the material) affects the
apportioning of stress within the material when the latter is faced with pressurized fluid.

DERIVATION

If fluid and solid do not form distinct phases in the material, pore pressure at a
particular place in the sample is taken in the Harrigan and Mann (1987) sense, i.e., the
pressure in pure fluid in equilibrium with that in the material at that place.
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Without appeal to strain energy the present derivation yields a consolidation equation
in terms offour mechanical constants and the permeability. Because the material is assumed
to have a single-valued potential energy of strain, two of the: constants are identical.

Biot (1955) described strain energy in terms of the strains of solid and fluid, and found
the various stresses by differentiating this expression by the strains that the stresses would
cause. The coefficients of the terms of the energy formula appear in these derivatives. They
are unfamiliar, and Biot and Willis (1957) spent many difficult paragraphs explaining how
they are related to mechanical moduli that can be measured. My way of describing the state
of the material leads to an expression for strain energy in terms of directly measurable
moduli.

The conventions and symbols of Biot and Willis (1957) will be followed as far as
possible.

Accelerations of fluid and solid are so small in consolidation phenomena that inertial
reactions are negligible. The total force and total torque on any volume of material are
thus taken to be zero. I will show that this makes the Laplacian of dilatation proportional
to the Laplacian of pore pressure, which causes a proportional local influx of fluid and a
consequent rise with time of the dilatation, the pore pressure, or both. That, in words, is
eqn (22), the run-on (i.e., with two equals signs) equation of consolidation. Equations (26),
(27) and (41) are eqn (22) after one of its coefficients has been eliminated by the appeal to
strain energy.

The state of stress in any tiny volume of an isotropic material is given by the nine
element matrix

[
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The strain tensor of the solid skeleton is
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The eij are deformations of the structure, not of th(: individual rods, strips or sheets
that make it up. As an analogy at a larger scale, think of the bends and loss of height of an
earthquake-damaged building, not the twisting and buckling of its individual pillars, walls
and floors.

For small strains, the proportional increase of the material's extent, i.e. that of the
volume of the domain throughout which the skeleton extends is

(3)

Subtracting minus the hydrostatic pressure 17 from the diagonal elements of the stress
tensor in eqn (l )-remember that positive, ii is a tension--gives the tensor ofeffective stress
r;}

'-Tn +17
Txy I xz

l 'yx
!yy+P ',. J (4)

'n !zy Tzc+p

Assume that the strains are known. What are the stresses? Because the torque on an
element of volume is zero, each shear stress T;j, i ¥- j, is the same as rji' Each is the
corresponding shear strain eij multiplied by the shear modulus Jl of the skeleton structure,
thus
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(5)

The effective stresses are more complicated for two reasons. First, a change in pore
pressure at constant skeleton strain causes a change in effective stress, the total stress minus
the negative of the pore pressure. Second, because of the cross coupling described by
Poisson's ratio, extending an otherwise unrestrained specimen in one direction produces,
in most materials, a shrinkage at right angles to the extension.

Take these effects in order. Were the skeleton unrestrained, a pressure p would cause
the extent, the volume of the domain throughout which the skeleton extends, to change by
- pb, a shrinkage, where b is the pore pressure compressibility of the material. Biot and
Willis (1957) call b the "unjacketed compressibility". If the solid phase has uniform proper
ties, which it may not have, b is the intrinsic compressibility of skeleton material.

To return the skeleton to its original extent would require that it be expanded by an
isotropic effective tensile stress given by minus this volumetric strain divided by K. the
compressibility of the skeleton at constant pore pressure. This is the "jacketed com
pressibility" of Biot and Willis (1957). The jacket applies stress to the solid skeleton, and a
vent tube extends into the sample to keep the pore pressure at zero. (In articular cartilage,
the bearing material on the ends of animal bones, K is much greater than b.) The final result
is an isotropic effective stress

r~xxporeprcssure == T;,'.vporeprc"Sure == r~;:porepressure == pb/K. (6)

Now consider the effect of strains. Any combination of extensions can be described as
the sum of equal extensions, positive or negative, along all three axes, an extension and an
equal shortening along two axes at right angles to each other-call them east-west and
north-south-and a positive or negative extension along the axis at right angles to these
two. Let this vertical axis be the x axis.

The equal extensions along all axes cause a proportional increase eisotropic in the volume
that is three times the extension in anyone direction. If the pore pressure is unchanged, the
isotropic tension that results is

r;iisotropic strain =: (1/K)eisotropic strain' (7)

Equal east-west extension and north-south compression cause neither strain nor stress
along the x (vertical) axis, and need not be considered further.

The extension along th(~ x (vertical) axis causes a tensile stress given by this strain
times the confined compression modulus :=: = 2f1 + Aof the solid structure, therefore

r :_\ uniaxial strain .= 2exx uniaxia 1strain' (8)

[The confined compression modulus is like the Young's modulus except that lateral shrink
age or expansion of the sample is prevented. Kenyon (1976) noted that it appeared in three
dimensional consolidation theory.]

Adding together the separate constituents gives. the effective stress in the x direction

r:·x == 'T ~~\' pore pressure + r ~:x isotropic strain + r ~'(x uniaxial strain

== l~b/K + (1 /K)eisOlfopicstrain -t. 2exx uniaxial strain .

The total extension along the x direction is

(9)
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exx == (1 /3)eisotroPicstrain -f- exx uniaxial strain

and the total volumetric increase is

e == £'isotropic strain + exx uniaxial strain'

Subtracting eqn (10) from eqn (II) gives

eisotropicstrain + == (3/2)(e-exx )

and subtracting eqn (11) from three times eqn (10) gives

exxuniaxiai = (3exx -e)/2.

Substituting eqns (12) and (13) into eqn (9) gives
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(10)

(11 )

(12)

(13)

r~x = pb/K+(3/2K)(e-exJ+3(3e,,-e)/2 = pb/K+3e,,[3-(I/K)]/2+e(3/K-3)j2

= pb/K+2Wn+Ae (14)

where J1 = (3j4)[3-(1/K)] is the shear modulus and A = [(3jK)-3]j2 the Lame coefficient
of the skeleton, which is the same as that of the entire material at zero or constant pore
pressure. Repeating the derivation for the y and z directions gives

r'~x = pb/K + 2J1e" + Jee

r;y = pb/K+2J1fyv+Ae

r~z = pb/K +2J1fzz + ),e. ( IS)

Equation (6) can now be made more general. If e,,+erv+ezz = e = 0,
<x + r~v + r~z = 3pb/K, so

(16)

where r' =(r'rx+r~y+r~z)/3.
In conjunction with eqns (5), eqns (15) give the full specification of effective stresses

in terms of strains. Equations (5) and (15) form eqn (43) in Biot and Willis (1957), because
b/K equals Biot and Willis's I -'Y.. If the skeleton material is intrinsically incompressible,
b = 0 and the pressure drops out of eqns (15).

Since inertial reactions are assumed to be minute, the net force on every elemental
volume of material must be effectively zero, so

(a/ax)(r"x-p)+ar"'Y/ay+ar~z/az = 0

aT~x/aX+(a/aY)(T;v-p)+ar;.z/i)z = 0

ar~x/ax+ar~y/ay+(a/cz)(r~z-p) = 0, (17)

which describe equilibrium in the x, y and z directions. This is eqn (2.10) in Biot (1955),
but written in the stress superposition system and with body forces set equal to zero.

The terms on the main diagonal account for the difference in the total stress on
opposing faces of an elemental cube and the off-diagonal terms account for the difference
between shear stresses on opposing faces.

Substituting eqns (5) and (IS) into eqns (17) gives
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(0/ax)[2j.le" + ..1.e-p(1-b/K)] + j.l(oexr/oy) + j.l(ae<z/oz) = 0

j.l(oevx/ax) -I- (0/ay)[2j.leyy -I- ..1.e-p(1- ,8/K)] -I- (j.l oeyz/oz) = 0

j.l(oezx/ox) -I- p(oezv/ay) -I- (0/oz)[2j.lezz -I-..1.e - p(l- b/K)] = 0 (18)

which describe equilibrium in the x, y and z directions. Regard this as a single vector
equation and take its divergence.

(0 2/bx2)[2j.le" -I- ..1.e-p(l- b/K)] -I- j.l(a2exy /ox oy) -I- j.l(02exz/ox az)

-I- j.l(02 ev')oy ox) -I- (a 2 /by2) [2J1eyy -I- I.e - p(l -- b/K)] -I- j.l(02 ey)oy az)

-I- j.l(a2ezx/oz ox) -I- j.l(a2ezy/oz oy) -I- (il 2 /bz2)[2J1ezz -I-..1.e - p(1- b/K)] = O. (19)

This is not as bad as it looks, because each mixed derivative of shear strain can be
replaced by the sum of the second derivatives of extension in the two dimensions of the
mixed derivative. From eqn (25) on p. 49 of Love (1944),

(02erz/oyaz) = (a 2evvloz2) -I- (02 ezz /ay2) = WezY/oz ay)

(a 2ezx /az ax) = (02ezz/ox2) -I- (02 en/az2) = (a 2e,,/aX OZ)

(02 eXy/axoy) = Weu/ol)-I-(a2eVyiox2) = (02 eyx /ay aX). (20)

(The left hand equalities are given by Love. The right hand equalities follow from the left
because of the symmetry of the expressions between the equals signs.) Love derived these
relations by expressing the strains as space derivatives of the displacement of material
points in the sample. Biot, in his derivation., expresses strains this way (without saying why
he does so), and thus implicitly uses eqns (20). Substituting eqns (20) into eqn (19) gives

(02/bx2)[2J1en -I-..1.e - p(l- b/K)] -I- P[(02 en/oy2) -I- (02 evy/OX2)

-I- (a 2ex)oz2) -I- (02 ezz /aX2)] -I- j.l[(02e'x/oy2) -I- (02 evy/aX2)] + (a 2/by2) [2j.leyy

-I-..1.e - p(1- b/K)] -I- j.l[(02 ezz /oy2) -I- (o2eyy/oz2)] -I- j.l[(02 en /oz2)

-I- (0 2ezz /ox2) -I- (0 2ezz/ol) -I- (0 2eVy /e'z2)] -I- (0 2 /bz2)[2j.lezz -I- ..1.e-p(1- b/K)]

= (02/bx2)[2j.l(e" -I-eVY -I-ezz ) -I-..1.e - p(1- b/K)] -I- (,32 /by 2) [2j.l(e" -I-eyy -I- ezz )

-I- ..1.e-p(1- b/K)] -I- (02/bz2) [2j.l(e" -I- evy -I-ezz )[..1.e-p(1- b/K)]

=V2[6pe-l-3..1.e-3p(1-bjK)] = 3V 2 [Se--p(1-bjK)] = 0,

or

(21)

The Laplacian of skeleton expansion is proportional to the Laplacian of pressure. For the
special case when b = 0, and provided that porosity has a definite meaning, this is eqn
(4.15) of Biot (1955). Biot (1955) does not give the general case.

This relation results from the equilibrium of forces, introduced as eqn (17). The force
on an elemental volume of solid skeleton clue to a gradient of effective stress is balanced by
the force due to a gradient of pore pressure.

Equation (21) contains neither time nor the compressibility of the fluid. It relates
dilatation to pressure, but says nothing about how these change with time as the fluid flows
through the material. The consequences of fluid flow will now be considered.
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ENTER FLOW

Darcy's law says that fluid flows into a unit volume of material at a rate (I/R.1V 2p
where K is the flow resistivity. This fluid will expand the material, increase the pressure in
its pores, or both, so

where' is the volume of fluid in a unit volume of the material (terminology of Biot and
Willis, 1957). This is one form of the consolidation equation. Its first equality is eqn (21).

Porosity does not appear explicitly. It falls as material is compressed, but the fall
affects consolidation only through lowered permeability and increased stiffness.

INVOKE THE STRAIN ENERGY OF THE SOLID

Since 3, b/K = (or'/oP)e=const' (o'/oe)p~'consu (o'/oP),~const and K are measurable
material constants, eqn (22), in principle, solves the problem. Measure them, insert the
initial and boundary conditions, and eqn (22) predicts what the material will do. But
because the solid is assumed to be elastic (oGoe)p~const = I-b/K, as shown below, which
eliminates one coefficient.

From eqn (16), (or'/ap)e~const = b/K. Subtract both sides of this from unity to get

[o(p -- r')/OP]e=const CO" 1- bj/(. (23)

Because the solid is assumed to be elastic its strain energy W is a single-valued function
of e and C. Therefore

So

Curl Grad W = [0(0 w/aOe~const/oel:=const - [0(0 W/oe), ~const/one~const

= (op/oe),~const - [o(r' -p)/oOe~const = o. (24)

(because, from eqn (24) [o(r'-p)/oC]e~constj(op/oe)'~const = 1) = -[o(r'-p)/oC].'~const

(oGoP)e~const [from the cyclic rule for partial derivatives (Gellert et al. 1977)]

= -[o(r'-p)/oP]e=const = l-b/K,

from eqn (23), and eqn (22) becomes

(25)

[3/(I-b/K)]V2 e = V2p = K[(I-b/K) oe/ot+ (aC/oP)e~constop/ot] , (26)

or, using Biot's M = (op/oOe~consu

(27)

Equations (22), (26) and (27) are different versions of the tells-all, run-on equation of
consolidation.

Compressibility of the fluid does not appear explicitly. It exerts its effect through the
coefficient 1/M. Any influence that nearby solid has on the fluid's compressibility will
appear in the measured value of M.

The theory does not depend on the material's consisting of identifiable phases with
uniform properties. If the phases are uniform, the pore pressure compressibility b of the
domain occupied by the skeleton is the compressibility of bulk solid.
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If the solid is very stiff, 3 is very large, and the left hand equality in eqn (27) shows
that e becomes very small. So, therefore, does oe/ot. Alternatively, if the fluid is very
compressible, M is very small so the op/ot term becomes very large. In either case the oejat
term is much smaller than the apjOt term and eqn (27) approaches

(28)

the right half of which is a diffusion equation in pressure, the equation for a gas percolating
through a rigid sponge. The speed of percolation is proportional to M, the rise in pressure
when fluid is forced into the material, and inversely proportional to the flow resistivity K.

If the constituents of the material are incompressible, (o'joP)e~consL = 1/M = 0 = 0,
and eqn (27) reduces to

(29)

the right-hand half of which is a diffusion equation for the volumetric strain. It describes
the change in deformation of an elastic sponge made of intrinsically incompressible material
like an idealized rubber soaked with incompressible fluid, and is a good approximate
equation for articular cartilage. The speed of the change is proportional to the confined
compression modulus 3 of the material at constant pressure and inversely proportional to
K. In this approximation only 3 and K need be measured to predict what the material will
do.

If the porosity can be defined the right-hand equality in eqn (29) corresponds to eqn
(4.16) in Biot (l955).

If neither the (l-ojlC) aejot = U'</ce)p~const oe/at term nor the (l/M) op/it =

(o(/ap)e~consL op/Ot term can be ignored, eqn (27) is not a diffusion equation unless oe/ot
and opjat are everywhere in the same proportion to each other and remain so. In three
dimensions this in general does not happen.

Consider a cylindrical specimen immersed in a bath of pore fluid at zero pressure. Put
it under rapidly increasing tension. In its interior some of the tension will be borne by
negative pressure in its pore fluid. At its surface none will be so borne because the pore
pressure will be zero to match that in the bath. The ratio of lap/at! to !ae/hl is much higher
deep in the interior than near the surface.

IN ONE DIMENSION

If the specimen is infinitely broad the situation becomes one-dimensional. If this
dimension lies in the x direction, eqn (27) becomes

[3j(l-ojlC») jj2eu /ox 2 = rj2p/ox2 = K[(l-i5/K) oeujot+ (l/M)opjot). (30)

Equation (17) for the equilibrium of fom::s becomes

(a/ox)«x-p) = O.

Integrating this with respect to x gives T~,-p = const. = To\x(t), so

(31 )

where TonU) = T~x - P is the total tensile stress on the sample. It is constant throughout the
depth of the sample, but may vary with time. Substituting eqn (31) into the first of eqns (15)

so
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aenlat = {(l-c5IK)opiot+d[roxx (t)]1 dt}/E.
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(32)

(33)

If d[roxxCt)]/dt is zero, oen/ot is in constant proportion to oplot and either e" or p can be
eliminated from eqn (30) to give a diffusion equation in p or e". So long as the loading is
constant, eqn (30) is a diffusion equation. This is true whatever the boundary conditions
are in other respects. The force may be applied by impermeable anvils, permeable anvils or
by fluid alone at either end in any combination, and these conditions may change during
the period of observation.

CO\1PARISON WITH BlOT

For cases where the porosity has a definite meaning, the right hand equality in eqn
(27) is the end-to-end equality in Biot's run-on eqn (4.9) (Biot, 1955). Biot does not give
the end-to-end equality in eqn (27) because it depends on eqn (21), for which Biot (1955)
does not give the general case. Variables and coefficients correspond thus, McCutchen to
the left of the first equals sign, Biot (1955) and Biot and Willis (1957) to the right:

Pressure p =- a/I.

wherefis the porosity, the volume of the pores divided by the total volume.

Flow resistivity K =, blf2
,

l--l5IK = ,I. =f(Q+R)IR,

M == M = Rlf2
•

Q and R are coefficients in Biot's expression for strain energy. By making the above
substitutions, Biot could have eliminated porosity from his eqn (4.9).

Biot and Willis did not treat M as a quantity one might measure. Instead the measured
quantity would be y = (O'lap)T'~consL' the coefficient of fluid content, the amount of fluid
that enters a unit volume of unrestrained sample when unit pressure is applied. The
boundary across which this flux is defined shrinks with the sample as the pressure rises.

To relate M to y, first raise the pressure on a sample by !:i.p. The extent of the sample
will shrink by c5!:i.p, and its fluid content' will rise by y!:i.p. Now stretch it back to its original
extent at constant pressure. Because by eqn (25) (a'/oe)I'~COnSL = 1-l5/K, its fluid content
will rise by a further c5!:i.p(o'lae)l'~consL = c5!:i.p(l-l5IK), making' increase in total by
!:i.p[y+l5(l-c5IK)]. So

(aplaOe~consL = M = I/[y+l5(l-c5IK)] = RIP, (34)

the last equality from Biot and Willis (1957)'s eqn (21). Equation (34) can also be derived
by eliminating e between eqns (36) and (37) below and differentiating the result to get
(a'loP)r~consL = y.

ALTERNATIVELY, FROM AN EXPLICIT EXPRESSION FOR STRAIN ENERGY

Readers who distrust the physical reasoning used to derive various quantities may
prefer to see them derived from strain energy. Since the solid is assumed to be Hookean,
its potential energy W is
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(35)

per unit volume where e and' are taken to be zero when p and r' = (r~x + r~y + r:z)/3 are
zero. (Up to here the zeros of stresses and strains have not mattered.) M is the quantity
used in Biot and Willis (957). The meaning of Z and B will soon be evident. Shear strains
are not considered because they affect neithe~r the vollume of a sample nor, if the material
is linear, its effective tensile or compressive stresses. (See eqn (5) or eqn (4.3) of Biot,
1955.)

Equation (35) resembles eqn (4.1) of Biot, 1955, but it considers the energy as a
function of e, the extent of the solid and Cthe fluid content, rather than e and the dilatation
/; of the fluid.

Change in internal energy of the material equals work done upon it. Since the
increments of work are (r' - p) de and p de the former because r' - p is the tensile total
stress upon the surface of the sample,

r' -p = (aw/ae)(=const "CO Ze+B'

p = (aw/cOe=const = Be+M'.

(36)

(37)

Differentiate eqn (36) with respect to' at constant e to get B = (o(r' -p)/aOe~consuthe
change in total tensile stress r' - p consequent on an injection of fluid at constant extent,
and differentiate eqn (37) with respect to e at constant' to get B = (ap/oe)(=consu the change
in pore pressure occasioned by a change in extent in the absence of gain or loss of fluid. B
has two meanings because it is the coefficient of the cross term in eqn (35). The resulting
equality (a(r' -p)/aOe=const == (ap/ae)(=const is eqn (24), derived via Curl Grad W = O.

Differentiate eqn (37) with respect to , at constant e, getting

so

(ap/aOe~const = M, (38)

B/M= [o(r'-p)/ap]e=const = ar'/ap)e~const-l

= - (ae/8p)T'=Const/(ae/8r')p=const --1 [from the cyclic rule (Gellert et aI., 1977)]

= 15/K-l

from which

(ar'/ap)e=const = oiK, which is eqn 16, and

B= --O-15/K)M.

(39)

(40)

Equation (40) can be used to write the consolidation eqn (26) in terms of the coefficients
in the energy expression eqn (35) thus:

(41 )

From eqn (36) Z = [a(r' -p)/ae](~Const is the tensile total stress r' -p produced by
extending the material while not allowing fluid to enter it. It is the bulk modulus of the
material in the absence of redistribution of fluid, and is very close to what one would
measure even with flow permitted if the experiment were done very quickly.

Coefficient Z does not appear in eqn (41). Alone of the coefficients M, B, and Z in the
potential energy eqn (35), Z is not multiplied by i;, and concerns only situations in which
fluid does not move relative to the solid, so there is no consolidation. For consolidation
theory the confined compression modulus 2. and any two of M, Band 15/K = (ar';ap)e=const
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are sufficient. band K do not need to be known independently. Z can replace M or B, but
then K must be known as well as OIK to find M or B,

To express Z in terms of M and other constants first expand a sample volumetrically
by b.e at constant pore pressure. This will cause an isotropic effective tensile stress b.e/K in
the skeleton, and by eqn (25) a volume b.e(l-oIK) of fluid will enter it. Now remove this
fluid at constant e. The pressure will drop by Mb.e(l-15IK), and the effective tensile
stress will drop by Mb.eoIK(l-bjK) by eqn (16). The change in total stress
b.eZ = b.e{l/K+ M[(l- OIK) -OIK(I-- OIK)]} = i1e[I/K + M(1-0IK)2], so, because B =
-(I-bjK)M

(42)

Alternatively, eliminate ( between eqns (36) and (37), differentiate the result to get
(a'C'lae)p~const, = 11K and solve the resulting equation for Z.

GOOD AND BAD COEFFICIENTS

The effective tensile stress of a material as a function of extent and pore pressure can
be expressed in terms of any three independent coefficients that can be extracted from eqns
(36) and (37). Though M, Band Z are themselves measurable, they all involve compressing
solid or fluid rather than merely deforming the structure of the solid. Coefficient K is always
larger than 0 and 11M. When, as in cartilage, the solid structure is easily deformed K is very
much larger, so 1- bjK is little different from unity. M, Band Z are then of about the same
magnitude and a bad set to measure.

The effective stress 'C' depends on the differences between the magnitudes of M, Band
Z, as shown by adding eqns (36) and (37) to get

'C' =(Z+B)e+(B+M)(. (43)

(Remember that M and Z are positive and B negative.) Using eqns (40) and (42) to express
Z and B in terms of M, K and I-bIK gives these differences directly.

in which M and - M twice cancel to give

(44)

a stress much smaller than Me or M( if K is much larger than 0 and 11M.
Likewise, the strain energy, minus any contribution from shears, can be written

(45)

EXPRESS POTENTIAL ENERGY IN TERMS OF STRESSES, NOT DISPLACEMENTS

M, 0, and K are good coefficients, but eqn (45) can be a poor equation. In cartilage K

is much larger than 0 and 11M, e approximately equals ( and the cross term in eqn (45)
nearly cancels the other two. Most of the strain energy lies in the deformation of the solid
skeleton rather than compression of the materials. This is well concealed in eqn (45), but
obvious if strain energy is written in terms of 'C' and p rather than e and (. To do this note
first that eqn (35) can be written as the sum of two squares, and that via eqns (42) and (37)
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W = (1/2)[(Z - B 2/M)e2+ (B 2e2+2BeM( + M 2(2)/M]

= (1/2) [(Z - B 2/M)e2-+- (Be +M0 2/AI]

= (1/2)[(e2/K) + p2 /M] = (1/2)[e2(or' loe)Fccwt + p2(onDP)e~const]' (46)

Here the energy is written as a function of extent e and pressure p, There is no cross term,
(There is no cross term because an extension e at zero p causes a rise in potential

energy proportional to e2
, Because the pressure remains zero a subsequent change in p

causes a rise in energy proportional to p2, An extension e at zero (, on the other hand,
causes a rise in energy proportional to e2

, but it also changes the pressure p so a subsequent
change in ( does not cause a rise in energy proportional to (2, hence the presence of a cross
term in eqns (35) and (45),

For completeness note that eqn (35) can be expressed as the sum of a different pair of
squares, Coupled with eqns (36) and (42) this gives

W = (1/2)[(Z2 e2+2ZBe( + 8 2(2)/Z +(M - B 2 /ZK2
]

= (1/2)[(Ze+B0 2/Z+ (M _B 2/Z)n

= (1/2){(r'-p)2/Z+[M/(KZ)K2
}

= (1/2) {(r' - p)2 [Dejc(r' --p)](~consl + (2 (ap!oO,-p~const}

in total stress r' - p and fluid content" agalin with no cross term.)
Eliminate ( between eqns (36) and (37), use eqns (40) and (42) getting

e = Kr' -(jp

and substitute this in eqn (46) to get

(47)

(48)

(49)

In consolidation the gradients of pressure and effective stress balance each other, so r'
and p are of the same order. In cartilage the intrinsic compressibility (j of the solid and 1/M
are of the same order. The effective-stress compressibility K of the solid structure is much
larger, so (j/K« I. Thus, in eqn (49) (I5"/K) <<1/M, and roughly

(50)

in which the first term is much the largest. Most of the strain energy is in deformation of
the skeleton structure.

If all the constituents of the material are incompressible (j = 0 = 1/M, so

(51 )

where v is the Poisson's ratio at constant pore pressure.

ARTICULAR CARTILAGE

Estimate Z, Band M for cartilage. Take the compressibility 1/Z of the whole material
to be the same as the pore pressure compressibility () of the solid. Pore fluid must then have
the same compressibility. When the whole material is pressurized everything shrinks to the
same degree and (is zero. Equation (42) then becomes
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2 = 1jK-B(I-J/K) = IjK--B(I-1/2K), so

B = (ljK-2)/(l-ljz,,:) = -2.

81

(52)

Assume J to be 4.44 x 10- 5 cm2/kg, the compressibility of water. Then
2 = 1jJ = 2.25 x 104 kg/cm2

. For Poisson's own proposed Poisson's ratio, 1j4 (Love, 1944,
p. 13), the bulk modulus IjK of the structure is 5/9 the confined compression modulus,
about 5.8 kgjcm2 (McCutchen, 1962, wrongly called it the Young's modulus. Though
unconfined laterally, the sample was much thinner in the direction of compression than
across it, and compressed between rough-surfaced anvils. that must have prevented its
surfaces from slipping. The figure is for compressive deformation. Extension tautens the
collagen fibers in the cartilage which makes the modulus much higher.) The bulk modulus
of the cartilage structure is therefore about 4 kgjcm2

, its compressibility 0.25 cm2jkg, 8jK =

1.776 X 10- 4
, 1-8jK = 0.9998224 and M = 1.0001772 == 2.250399 x 104 kgjcm2

. It is
because K » J that 2, M and B are all of about the same magnitude.
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